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Abstract - Bubble formation and detachment is an integral part of the two-phase flow science. 

The objective of the present work is to theoretically investigate the effects of liquid cross-flow 

velocity, gas flow rate embodied in the momentum flux force, and orifice diameter on bubble 

formation in a wall-bubble injection configuration. A two-dimensional one-stage theoretical 

model based on a global force balance on the bubble evolving from a wall orifice in a cross 

liquid flow is presented in this work. In this model, relevant forces acting on the evolving 

bubble are expressed in terms of the bubble center of mass coordinates and solved 

simultaneously. Relevant forces in low gravity included the momentum flux, shear-lift, 

surface tension, drag and inertia forces. Under normal gravity conditions, the buoyancy force, 

which is dominant under such conditions, can be added to the force balance. Two detachment 

criteria were applicable depending on the gas to liquid momentum force ratio. For low ratios, 
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the time when the bubble acceleration in the direction of the detachment angle is greater or 

equal to zero is calculated from the bubble x and y coordinates. This time is taken as the time 

at which all the detaching forces that are acting on the bubble are greater or equal to the 

attaching forces. For high gas to liquid momentum force ratios, the time at which the y 

coordinate less the bubble radius equals zero is calculated. The bubble diameter is evaluated 

at this time as the diameter at detachment from the fact that the bubble volume is simply given 

by the product of the gas flow rate and time elapsed. Comparison of the model’s predictions 

was also made with predictions from a two-dimensional normal gravity model based on 

Kumar-Kuloor formulation and such a comparison is presented in this work. 

Key Words: Force Balance. Bubble Detachment. Reduced Gravity 

1. INTRODUCTION AND LITERATURE REVIEW 

Several investigators have studied experimentally the process of bubble injection and 

detachment in still fluids under full gravity conditions. Kumar and Kuloor (1970) published 

an excellent review on the subject of bubble formation and detachment. They summarized the 

experimental work in the literature as well as the theoretical work destined to predict the 

bubble volume at detachment from a force balance. Marmur and Rubin (1976)’ modeled 

bubble evolution and separation in still fluid and under normal gravity condition using a force 

balance on elements of the interface which are expanding from balancing the surface tension 

and pressure forces. The work of Tan and Harris (1986) extended the work of Marmur and 

Rubin with the addition of the unsteady part of the potential function when solving for the 

liquid pressure using Bernouilli’s equation. They included the effect of the gas momentum in 

addition to the inclusion of the gas density to allow for its increasing significance at high 
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system pressures. They also incorporated more refinement of the thermodynamics aspect of 

the problem, which involves solving for the gas flow rates and pressures of the chamber and 

the bubble. Kawase and Ulbrecht (198 1) formulated a model based on balancing forces of the 

process of droplet formation and detachment from a nozzle submerged in a flowing liquid. 

They simulated the influence of the continuous flowing phase by virtually inclining the 

nozzle. Tsuge et. al. (198 1) have investigated bubble evolution and detachment under normal 

garvity from an orifice submerged in a flowing liquid and studied the effects of the liquid 

velocity on bubble diameter. The cross liquid velocity was accounted for by the modification 

of the Rayleigh-Plesset (R-P) equation which describes the bubble evolution under prescribed 

bubble and chamber pressures. They also adopted the two-stage bubble formation and 

detachment process. Pinczewslu (1981) developed a model for bubble formation from an 

orifice submerged by a liquid. The model is based on solving the modified Rayleigh equation 

for bubble growth in conjunction with the equation of motion for vertical translation, the 

orifice equation, and the chamber pressure equation. The gas momentum was accounted for 

by the incorporation in the modified Rayleigh equation a term that represents the pressure due 

to a spherical vortex. Hooper (1986) however, used the boundary element method to study 

the process of bubble formation at an orifice submerged in an inviscid still liquid. The flow of 

the surrounding liquid flow is assumed irrotational and incompressible so can be described in 

terms of a velocity potential, which satisfies Laplace’s equation. The problem reduced to 

solving numerically Laplace’s equation for the potential function simultaneously with the 

unsteady inviscid equation of motion, which relates the potential function to pressure and 

velocity field. Ghosh and Ulbrecht (1989) studied bubble formation from orifices submerged 

in a continuous phase of non-newtonian liquids under full gravity. Their theoretical model 
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was based on solving the pressure balance equation simultaneously with the vertical equation 

of motion, which is based on a force balance along the direction of bubble detachment. 

Zughbi et. al. (1984) solved the full Navier Stokes equations for a bubble forming in a fluid 

using the Marker-and-Cell (MAC) technique which requires extensive computing time. 

Unverdi and Triggvasson (1992) simulated unsteady fluid flows in which a sharp interface or 

a front separates fluids of different density and viscosity. The flow field is discritized by a 

finite difference stationary grid and the interface by a moving grid. Motion of rising bubble is 

simulated using their front tracking method. Marshall and Chudacek (1993) formulated a 

model based on a force balance to calculate the bubble detachment diameter. In their 

formulation, they solved simultaneously the transient chamber pressure with the orifice 

equation and the equation of motion in the liquid flow direction. 

In low gravity, the force of buoyancy is not present, and as a result, bubbles can grow larger 

than the pipe or channel hydraulic diameter, thereby forming a Taylor bubble, especially when 

produced using smaller gas flow rates. A detaching force is needed in order to achieve bubble 

detachment. Bubbles can be detached by means of acoustic or electric fields, which generate a 

corresponding force that detach the forming bubbles. These methods are being studied by 

Prosperetti et. al. (2000) and Herman et. al. (2000). A fluid induced detaching force can be 

also considered for bubble detachment in low gravity. The cross-flow of liquid assists in the 

detachment process as was shown by Kim et. al. (1994), who developed a theoretical model 

based on the force balance to predict the bubble diameter at detachment from a nozzle 

submerged in a cross and co-flow of liquid. Direct comparison of their results with previous 

ground experiments showed good agreement. Tsuge et. al. (1997) developed a model based 
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on the simultaneous solution of the modified Rayleigh equation with the equation of motion 

using equivalent radius of curvature of the bubble gas-liquid interface. However, their model 

was not applicable in the cross-current configuration due to the lack of symmetry. Badalassi 

et. al. (2000) developed a 3-D code with the gas-liquid interface being captured implicitly in 

an Eulerian mesh. The two-phase flow was treated as a single fluid with variable properties, 

and with the density and viscosity changing sharply at the interfaces. Their results showed 

qualitative agreement with the experimental data of Misawa et. al. (1997). Bhunia et. al. 

(1998) revisited the co-flow calculations and reformulated the problem by including the 

relative velocity into the inertia term of the forming bubble. The results compared well with 

experimental data obtained from a low gravity nozzle-injection bubble-generation and 

detachment experiment performed on the NASA DC-9 Low Gravity Platform. 

Bubble generation and detachment from nozzle submerged in still liquids and from wall-flush 

orifice injection have been studied under low gravity conditions, with and without cross liquid 

velocity. Pamperin and Rath, (1995) have studied the bubble formation from a submerged 

nozzle in a still fluid under low gravity conditions and found that detachment occurs beyond a 

critical Weber number where the latter is defined in terms of the gas velocity and orifice 

diameter. In their experimental work, they drastically reduced the buoyancy by performing 

the experiment in a 4.7 s drop tower. They had found experimentally that bubble detachment 

occurs beyond a critical Weber number (We > 10) in contrary to what is seen under normal 

gravity. They also found that a critical We (beyond which detachment occurs, i.e. We > 8) 

can theoretically be derived by balancing the momentum flux and surface tension forces. 

Their definition of the gas momentum flux force is reduced by a factor of 2 which increased 



the theoretical We by a factor of 2. However, if the correct momentum flux force is used, then 

when balanced with surface tension yields the condition We > 4 as the criteria for detachment. 

Nahra and Kamotani (2000), in a low gravity bubble formation and detachment from a flush 

wall orifice experiment and under liquid cross flow, showed using a scaling analysis that when 

the gas momentum is large, the bubble detaches from the injection orifice as the gas 

momentum overcomes the attaching effects of liquid drag and inertia. The surface tension 

force is much reduced because a large part of the bubble pinning edge at the orifice is lost as 

the bubble axis is tilted by the liquid flow. When the gas momentum is small, the force 

balance in the liquid flow direction is important, and the bubble detaches when the bubble axis 

inclination exceeds a certain angle. 

Emphasis on modeling of bubble detachment using force balance has not been given to the 

problem of wall bubble injection and detachment under conditions dominated by high 

momentum flux and by forces in the liquid flow direction. Wall injection of bubbles differs 

from bubbles formed by a nozzle submerged in a liquid cross flow setting. The differences lie 

in the competition of the surface tension force with other relevant forces such as the drag, 

shear-lift, momentum flux and inertia. It is the objective of this work to develop a global 

force model that predicts the bubble evolution and detachment in low gravity with 

considerations given to forces that are not well pronounced under normal gravity due to the 

masking effects of the buoyancy force. 

2. CONSTANT GAS FLOW RATE MODEL 

First, the assumptions that are inherent to the model are presented. This is followed by a 

presentation of the equation of motion for the x and y coordinates. Third, the initial conditions 
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relevant to the equations of motion and the detachment criteria are given. Then the results of 

the model are compared with the low gravity experimental results obtained by Nahra and 

Kamotani (2000). 

2.1 Model Assumptions 

The problem at hand is defined as follows. Air is injected from a flush wall orifice (inner 

diameter DN) at an aifflow rate of Qg in a channel of hydraulic diameter Dp where liquid flows 

at a velocity UL. The liquid flow is laminar. Basic observations made in low gravity show 

that the bubble tilts and detaches under different regimes of gas momentum and liquid 

momentum. Figure 1 illustrates the problem set-up. The assumptions for this problem are 

given below, 

1- The liquid flow is assumed to be uniform when used in the inertia force expression 

and is represented by the average liquid velocity UL. Since this model is used to 

compare its predictions with experimental results that were obtained on board of the 

NASA low gravity platform DC-9 aircraft, and since the flow of liquid is begun at 

every parabolic pass, the flow is determined to be unsteady. Flow velocity 

calculations showed the flow to be more uniform than Poiseuille-like in the channel 

where the bubble formation and detachment experiments were carried out. 

2- Gas flow rate, Q,., is assumed constant in time during the bubble evolution and until 

This is a reasonable assumption given that the density of the gas is not detachment. 

changing drastically between the chamber and the bubble (Hooper 1986). 
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3- As a consequence of the constant gas flow rate, bubble volume is assumed to evolve 

based on V B = Q ~  t, or r(t)=(Qg t/(4/37r))"3. 

4- The viscous effects that are considered in this work relate to a bubble in a simple shear 

flow and not a bubble evolving from and attached to a wall at the orifice interface. 

2.2 Equation of Motion in the x Direction 

The important forces in the x-direction are the inertia which can be attaching or detaching 

depending on the sign of the relative velocity between the evolving bubble and the liquid, the 

surface tension which is attaching and the drag which is a detaching force. 

2.2. I Inertia Force 

The inertia force is obtained from the decomposition of Eq. 1 (given below) into an x and y 

I coordinates. Equation 1 is given by, (Bhunia et. al., 1998), 

............................................ (1) 
dt 

We let the x-component of S be x(t) and similarly, the y-component be y(t). Moreover, we 

substitute Qg t for VB. Then, the x-component inertia force becomes, 

.................. F,, =e,(-C,U,p, +(p, +CMpL)x'( t )+t(p,  +CYpL)x" ( t ) )  (2) 

2.2.2 Drag Coefficient and Drag Force 

Drag force and CD, the drag coefficient are given by, 
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u , - x )  + y  ( u L - x ’ ) . . . . * . ( u ) ;  F,, = - I CDpLnr2 ,/r 
................................... (3) 

2 
15.34 2.163 
Re, 

( b )  ................................. +- c, =- 

ReB is the bubble Reynolds number defined as DBUJV. The drag coefficient was obtained 

from a numerical calculation performed by Legendre and Magnaudet, 1998, where the drag 

coefficient on a bubble in a simple shear was calculated as well as the shear lift coefficient. 

The tabulated data for the drag coefficient in the work of Legendre and Magnaudet were fitted 

into Eq. 3 (b). 

2.2.3 Surface Tension Force 

The surface tension force F, is calculated by integrating the attaching surface tension force 

components (that point in the negative x and y direction) over the orifice rim. The x- 

component of the surface tension force points in the negative x direction and is given by, 

Fox = 2 6,Dcos[r(@)Jsin($>d$ .................................................................... (4) I:I - 2 

The relation between y the bubble interface local inclination angle and $ the longitudinal 

angle is given by, 

............................. y(@)= ( u @ ~  +b@+c)H,,,,,($-$,)+pHU~,,,,($, -$) (5) 

In Eq. 5, H U n i f  S fep  is the Heavyside unit step function, the constants a, b, and c are determined 

from the values of a and p shown in Fig. 1, and the angle is the onset of the quadratic 

transition fromp to a. The surface tension force in the x-direction is calculated as a function 
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of the inclination angle 8 by numerical integration of Eq. 4 for three different nozzle 

diameters, D~=0.033, 0.076 and 0.15 cm. The results are fitted into quadratic equations and 

are shown below: 

+ 0.2400 - 0.1306’ + D, = 0.033cm 
F,[~,D,]= + 03-56 -0.30002 + D, = 0 . 0 7 6 ~ ~  ............................................. (6) 

+ 1.0958 - 0.5930’ + D, = O.15cm I 
In these equations 6 is taken as tan“(x/y). Equation 6 describes the integrated surface tension 

of a bubble that is being formed from a wall orifice with two different interface angles cy and 

p, and an inclination angle 8. It reflects the current experimental observations that were made 

in low gravity where the bubble does not develop a neck. Therefore Eq. 6 was used into the 

model. After the introduction of the forces in the x-direction, the force balance results in, 

Qg (-C,~,P, + ( P ~  + C , P , ) X ’ ( ~ ) + ~ ( P ~  + C M p L ) x ” ( t ) ) =  

2 

+OS558 - 0.3008~ -+ D, = 0.076cm 

(7) ....................... - c D p L n r 2 J ~ ( U L  1 - x’)- 

+0.2408 - 0.1308’ + D, =O.O33cm 

+I. 0958 - 0.5938’ + D, = 0.15cm I 
I 

2.3 Equation of Motion in the y-Direction 

The force balance in the y direction represents a competition between the detaching and 

attaching forces acting on the forming bubble. The detaching forces (pointing in the +y 

direction, Fig. 1) are the buoyancy, shear lift, momentum flux, and pressure. The attaching 

forces are the surface tension and the drag. 
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2.3.1 Inertia Force 

Application of Eq. 1 to the y-component yields the following: 

F,y = Q, ((p, + C, p L  )y’( 1 )  + dp, + C, p, )y”(  t )) ....................................... (8) 

It can be noted that the inertia force in the y direction does not involve UL that came from the 

relative velocity term of the inertia illustrated in Eq. 1. 

2.3.2 Drag 

The drag force in y direction differs from the x-component drag force by the exclusion of the 

relative velocity effect because to the liquid velocity is along the x direction (’y’ vs. UL-x’). 

Using the same drag coefficient as in Eq. 3, the drag force becomes, 

(9) 
I F . = - C D p L n r 2 d / y ’  ............................................................ 

D j  2 

2.3.3 Surface Tension Force 

The surface tension y-component points in the negative y direction and is given by: 

............................................................................... (10) 
2 

The y(4) function described in Eq. 5 is used without changing the parameter 40. Integration of 

Eq. 10 for different orifice diameter as a function of the inclination angle 8 and fitting the 

results in quadratic equation in 8 yield: 
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5.15-5.256 -1.336’-+ D,  =0.033cm 

Fq[O,D,]= 11.8-12.16-3.0862 D, =0.076cm ................................ (1 1) 

23.4 - 23.96 - 6.086 * + D,  = 0.15cm I 
Equation 11 was used to calculate the surface tension force components in the y-direction with 

8 = tan-’(d’). The use of Eq. 11 is justified by the same argument made in the previous 

section. 

2.3.4 Shear L$t Force 

The shear lift force used in this model is given by the following: 

(12) 
FsLy = 7 1 C L p L ~ r 2 U 1 2  ....................................................................................... 

For intermediate ReB, Legendre and Magnaudet (1998) calculated the following relation for 

the shear lift coefficient, 

-1 

...... ................................................... C Y R C  =- -I 5 < Re, < 500 (13) 
11+16Re,  
2 I+29Re,  

As can be seen, Eq. 13 shows no dependence on the dimensionless shear rate. The shear lift 

force becomes important in low gravity because of the absence of the buoyancy force acting 

on the bubble. This force on a bubble of 3 mm in diameter can be up to 5 % of the buoyancy 

force. Figure 2 shows the lift to drag coefficient as calculated from Eqs. 3b and 13. For 

bubble Reynolds numbers above -60, we see that the lift coefficient is greater than the drag 

coefficient. Since the prevailing bubble Reynolds numbers are in the range shown in Fig. 2, 
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one can deduce that in low gravity, the shear lift force is an important force to be included in 

the force balance. 

The shear lift and drag forces acting on the bubble represent the forces induced by the stress 

tensor on the bubble surface. These forces are connected with a bubble that is positioned in a 

simple shear flow and away from any wall. It is suggested that the existence of a surface near 

the bubble changes the flow field and creates a high-pressure region near the wall. The 

existence of the wall becomes apparent in the situation where there is a cross flow of liquid 

over the bubble. 

2.3.5 Pressure Force 

The pressure force consists of two components. The first component is attributed to the 

difference in pressure between the gas at the orifice tip and the liquid pressure. The second 

component is attributed to the contact pressure (Klausner/Shyy, 1999) at y = 0. These two 

components may explain the aforementioned compromise/reduction of the surface tension 

force that attaches the bubble to the orifice rim (Nahra and Kamotani, 2000). The pressure 

force is given by the following, 

pp =[[:]:DN 2 + F c p ) j  
(14) ........................................................................... 

Here 2 d r ,  the first component of the pressure force, is the interfacial tension pressure 

(KlausnerKhyy et. al., 1999) and Fcp is contact pressure force at y = 0. The force (2dr )  IT R N ~  

represents the net pressure force acting on the bubble control volume. It also can be 

interpreted as reaction force acting on the bubble control volume. The contact pressure force, 
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Fcp which scales as - nu RN Punit step(t, UL) may also be attributed physically to the effects of 

near-stagnation point(s) around the bubble base where the flow slows down and a high- 

pressure region is created that results in stretching of the interface and consequently helps the 

bubble detachment. Here Punit slep(t, UL) is the unit step Heavyside function. This force acts in 

the positive y direction and is classified as a detaching force whose direct effect is the 

reduction or compromise of the surface tension force. 

2.3.6 Momentum 

The momentum flux force is given by the following, 

- e; ? 

F, = J F ( p v . & ) =  pVp2AJ? = p J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
SN n/4D;  

............... (15) 

This is a detaching force and is rather relevant with smaller orifice diameters that result in 

greater gas velocities. 

Combination of all the above expressions into one equation yields the force balance equation 

in the y coordinate, 
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Drag 

+ 4 I 4p,Qg2 
3 2 7GDhr2 

+-nr3g ( p L  - p, ) + -PLuL2nr2cL + 
\ 

Uosrenfunr- Fliir Buoyancy 

5.15 - 5.258 - 1.338~ -+ D, = 0.033cm 

23.4 - 23.98 - 6.088' -+ D, = O.15cm 

11.8 - 12. 18 - 3.088~ -+ DN = 0 . 0 7 6 ~ ~  

Pr essiirc 

................ (16) 

2.4 Bubble Diameter at Detachment 

Equations 7 and 16 are solved simultaneously in order to calculate the bubble diameter at 

detachment. In order to perform the calculation, first we substitute for r(t), 

........................................................................................... (17) 

where VBO is the volume of a hemisphere of radius D N / ~ .  Substitution of the various forces 

into the force model results in the following set of equations: 
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I 15.34 2.16 1 

Drag 

+0.2409 - 0.130g2 + D, = 0.033cm 

- +OS559 - 0.30002 -+ D, = 0.076cm 

+1.0958 - 0.5938’ + D, = 0.15cm I (18) ....................... 
7 

Surfuce Tension 
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f 

f -  - 

- - 

20  (Q~;-v~~ f 

V 
1 +16 I 

5.15 - 5.258 - 1.33O2 + D, = 0.033cm 
- DN2 + Fcp - 11.8 - 12.18 - 3.0802 + D, = 0.076cm 

23.4 - 23.98 - 6.086' + D, = 0.15cm 
2 

Surface Tension 

, I  n 

The variables that are solved for are x(t) and y(t). The initial conditions are as follows: 

x' (0) = x(0)  = 0; 
y'(O)= 0; y(0)  = 0 

.............................................................................................. (20) 

2.4.1 Detachment Criteria 

It was shown by Pamperin and Rath (1995) that under no cross flow conditions, bubble 

detachment in low gravity is primarily governed by the balance between the gas momentum 
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and surface tension forces. If the momentum force is significantly less than the surface 

tension, detachment does not occur, and the opposite is true. If the ratio of the two forces is 

set to be 2 1, such a ratio reduces to a Weber number that is based on the gas velocity U, and 

the orifice diameter DN. We show this as follows: 

As previously mentioned, the definition of the momentum force in Pamperin and Rath’s work 

is one half the momentum force shown above in Eq. 2 1. This changes the condition above to, 

Their experimental results show that no detachment occurred in the 4.7 s low gravity period 

for We 5 10. For cases where the We 2 10, detachment occurred and the dimensionless 

bubble diameter decreased with We. 

The detachment criteria for the cross flow problem at hand is proposed based on the 

competition between the liquid and gas momentum forces per unit area. For gas to liquid 

momentum force ratio 5 1 and for a ratio of gas flow rate to critical gas flow rate Qp/Qgcfitbg < 

0.15, or equivalently We < 0.6, the detachment criterion is defined as the time at which the 

detaching forces exceed the attaching ones and thereby the acceleration in the direction of 

detachment becomes positive. Here the low gravity critical gas flow rate QgCritbg from 

Pamperin and Rath (1995) is simply obtained by setting the gas Weber number equal to the 
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limiting We for detachment, i.e. We = 4 for the theoretical limit. The criterion Qg/Qg~itbLg < 

0.15, or equivalently We < 0.6 was obtained numerically from running the relevant cases and 

determining the cut-off line that separates this regime from the one dominated by the 

momentum force. In order to formulate the detachment criterion, the acceleration components 

in the x and y directions were projected on the detachment angle of inclination. The 

acceleration and detachment criterion in such a direction becomes, 

a( t ) = cos [ tan-’ - ;:; ).it J + si.( tan-’ -b t 2 0 .............................. (23) 

The root of this equation is the time of detachment td of the bubble that is under a set of 

detaching forces that have overcome the attaching forces. This criterion is applied primarily 

for the bubbles made from D~=0.076 and 0.15 cm where such condition was true. This is in 

ng 

these two diameters and the bubbles they produced under the cross flow conditions at hand. 

As was suggested by Nahra and Kamotani (2000), forces in the x direction were as important 

as in the y direction in the determination of the bubble diameter at detachment unlike bubbles 

produced from D~=0.033 cm where the momentum force of the gas was predominant. For 

this case, bubbles were produced as if normal gravity conditions were present in the process 

due to the strength of the momentum flux force. This regime resembles the regime given by 

Pamperin and Rath (1995) except for the fact that there is a cross flow of liquid. For the 

regime where the gas momentum to liquid momentum force ratio is greater than 1, and 

Qg/Qg~stbg > 0.15, or equivalently We > 0.6, the proposed detachment criterion is similar to 

the one used by Kumar and Kuloor (1970) except for the neck length taken as zero. This is in 
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concert as well with the observation made by Nahra and Kamotani (2000) where scaling 

showed that the dimensionless bubble diameter in this regime is based on a balance of forces 

in the y direction. Therefore, the detachment criterion being sknilar to Kumar-Kuloor’s 

criterion is justified based on the experimental observations. A summary of the detachment 

criteria is given by, 

2 

For p,u, 2 I, and Qg 2 0.15 or We 2 0.6, + y( t ) -  r(t)> 0 
PLUL Qgcrirlpg 

2 

For - <I,and Qg < 0.15 or We c 0.6,+ a( t ) 2 0; . .............. (24) 
P P L 2  Q g  Crirlpg 

a( t ) = cos [ tan-’ - ::; )yp( t ) + sin[ tan-’ t 

In order to execute detachment criteria calculations, interpolating functions for y - r = 0 and 

a(t) = 0 were generated in MathcmaticaBTM from the solutions x(t) and y(t). Thc roots of 

these functions represented by Eq. 24 were found using the bisection method written in 

MathematicaBTM. The bubble diameter is then determined from r(t) by: 

....................................................................................... (25) 

Three MathematicaBTM notebooks (one for each orifice diameter) were written in order to 

perform the calculations for the bubble detachment. The difference between these notebooks 

is the orifice diameter, the gas flow rate pertinent to the experimental conditions of each of the 

orifices, the surface tension functions described above for different orifice diameters and the 

appropriate detachment criterion. 
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3. MODEL RESULTS-LOW GRAVITY 

3.1 Comparison of Predicted and Experimental Results 

In this section, the model’s predictions are compared with the experimental results obtained 

from a bubble formation and detachment experiment carried out on board of the NASA DC-9 

low gravity platform. During this experiment, bubbles were injected from a wall orifice into a 

liquid cross flow. Three orifice diameters (D~=0.033, 0.076, and 0.15 cm) wee used for 

bubble injection. The air flow rate Q,. ranged from 0.7 to 1.3 cm3/s for D~=0.033 cm, 0.3 to 1 

cm3/s for D~=0.076 cm, and 0.02 to 0.22 cm3/s for DN=O. 15 cm. The liquid velocity UL was 

varied from 2 cm/s to 14 cm/s. Bubble diameter at detachment was measured as a function of 

the liquid velocity and gas flow rate. In these low gravity experiments, two regimes of bubble 

formation were identified. The first is momentum flux dominated whereas in the second 

regime, forces in the direction of flow were relevant and their balance proved important to 

explain the experimental trends (Nahra and Kamotani, 2000). The motion in the z-direction 

was not considered because the motions in the x and y directions were deemed to be 

dominant. Experimentally, the bubble motion in the z direction was not measured or even 

observed because of the lack of cameras that could have been used to observe such a motion. 

G-jitter existed in all directions in the airplane but no appreciable effect of the g-jitter was 

observed in the bubble motion. Therefore, we concluded that g-jitter in the z-direction did not 

affect the main bubble motion. 

3.1.1 Predicted Bubble Kinematics and Detachment Criteria 

We present in this section the trends the model predicts for the variables that compose the 

detachment criteria, namely, the y(t) and r(t) for the detachment criterion y - r 2 0 and for a(t) 

2 0. Figure 3 and Fig. 4 show the calculated y(t) and r(t) coordinates of a typical run for 
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Q,=0.92 cm3/s, and D~=0.033 cm in low gravity with the following parameters, UL=2.59 cm/s 

(Fig. 3), and U~=12  c d s  (Fig. 4). We see from these figures that as the liquid velocity is 

increased, the intersection of the y and r curves occurred sooner which signifies a smaller 

bubble diameter with increased liquid cross velocity. Figure 5 and Fig. 6 show the same plots 

for normal gravity with the same parameters as the previous two figures. It is clearly apparent 

that the difference in the time of detachment is significantly less as the velocity is increased 

from 2.59 cm/s to 12 c d s .  

The model at hand does not capture all the details of neck formation and bubble detachment 

due to the collapsing of the neck because this is a global force model. However, this 

experimental feature is reflected in the prediction through the behavior of the y coordinate 

under the change of the liquid velocity and the calculation of the time to detachment from the 

intersection of y and r. Under normal gravity conditions, the y coordinate is not very sensitive 

to changing the liquid velocity due to the strong effect of the buoyancy force. Figure 7 shows 

the predicted bubble acceleration as a function of time for QpO.7 cm3/s, U L = ~  cm/s and 10 

c d s .  The upper-dashed (lower-solid) curve corresponds to the higher (lower) liquid velocity. 

This trend is proper because the longer detachment time td results in the larger bubble 

diameter observed at the lower liquid velocity. 

3.1.2 Bubble Diameter at Detachment-Effects of Liquid Velocity 

Figures 8, 9, and 10 show the predicted and experimental bubble diameter at detachment as a 

function of the average cross liquid velocity for the parameters shown in the figures. In Fig. 8 

and 9, the flow rate of gas was taken as the middle of the range of gas flow rates realized in 

the experiments using D~=0.033 and 0.076 cm because the bubble diameter was rather 
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independent of the gas flow rate. For the largest orifice diameter, it was observed 

experimentally that the bubble diameter depended on the gas flow rate. For this reason, Fig. 

10 shows the bubble diameter as a function of liquid cross velocity for two-gas flow rates, 

0.02 and 0.2 cm3/s. We see that the model predicts the experimental data in low gravity 

reasonably well especially for the larger orifice diameters. The maximum relative difference 

between the experimentally measured and predicted bubble diameter at detachment (i.e 

i(DB,,,, -DBExxr,) /DBPred, l )  is 23% for D~=0.033 cm, 12% for D~=0.076 cm and 8% for 

DN=0.15 cm for Qg=0.2 cm3/s. It is worth noting that the model detachment criterion is not 

based on any empirical or semi empirical correlation that describes the detachment process, 

unlike the ones reported in the literature for global force models. Detachment is determined 

from the acceleration in the detachment direction being greater or equal to 0 or from the time 

when y - r - 0. 

3.1.3 Bubble Diameter at Detachment-Effects of Gas Flow Rate 

The effects of the gas flow rate on the bubble diameter are explored further for the case of 

DN=O. 15 cm where the bubble diameter was shown experimentally to increase with increasing 

gas flow rate. Figure 11 shows the predicted and measured bubble diameter plotted as a 

function of the gas flow rate. Two cases are plotted. The first of which corresponded to 

UL=13.2 and the second to 5.2 cm/s. The trends show a reasonable agreement between the 

predicted and measured bubble diameters at detachment. The maximum relative difference 

between the experimentally measured and predicted bubble diameter at detachment is 18 %. 

Figure 12 shows the experimental and predicted bubble diameter plotted as a function of the 

gas flow rate for two cases of liquid velocity, U~=2.6 and 5.5 c d s  and for D~=0.033 cm. The 
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scale on the bubble diameter (0-15 mm) is considered similar to other figures for the purpose 

of consistency. The experimental part of this plot shows the weak dependence of the bubble 

diameter on the gas flow rate and the predicted part assures this behavior. The cross liquid 

velocity plays an important role in establishing this behavior. Here, the maximum relative 

difference between the experimentally measured and predicted bubble diameter at detachment 

is 25%. If the liquid velocity is not present, the bubble diameter is shown by Pamperin and 

Rath (1995) to decrease with gas flow rate in the regime of gas Weber number where 

detachment occurs (i.e. We > 4 (10)) due to the strength of the momentum force. Given the 

gas flow rates at hand, the calculated Weber number is definitely less than the theoretical 

(experimental) value of 4 (10). This leads one to deduce that the liquid velocity has a 

significant effect on the bubble detachment because even at lower liquid velocities, the 

forming bubble still detaches. 

3.1.4 Bubble Diameter at.Detachment-Effects of Liquid Surface Tension Coefficient 

This calculation was performed in order to assess the effects of water contamination on the 

bubble diameter through the changes in the surface tension coefficient. Figure 13 shows the 

effects of changing the surface tension coefficient on the predicted bubble diameter as a 

function of the cross liquid velocity. Predicted and experimental bubble diameter at 

detachment as a function of average cross liquid velocity are shown for two values of the 

, 
surface tension coefficient, namely, c = 60 dyneskm (lower curve) and 70 dyneskm (upper 

curve) and for DN=O. 15 cm are shown in Fig. 13. It is clear from the plot that as c decreases, 

the surface tension force decreases and the effect of surface tension in keeping the bubble 

attached to the surface decreases as well. This makes the time to detachment smaller, thereby 

resulting in smaller diameter bubbles. It is worthy to note that the two curves envelop that 
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experimental data. The surface tension coefficient was not measured prior and after the 

experiment. However, since we started with pure distilled and not de-ionized water, we 

believe that the inherent contaminants acquired from the experiment compromised the water 

surface tension coefficient. This suggests that the surface tension coefficient was less than 70 

dyneskm which corresponds to the surface tension of pure de-ionized water. 

3.2.5 Bubble Diameter at Detachment-Effect of gravity levels 

In order to assess the effects of gravity on the bubble diameter, the bubble diameter at 

detachment DB was plotted in Fig. 14 as a function of the gravity levels g/go for D~=0.033 cm 

and for UL = 1 c d s .  As expected, the bubble diameter at detachment decreases with 

increasing gravity level due to the increase in buoyancy which as g approaches g0=980 cm/s2, 

the buoyancy force becomes the most important detaching force that results in bubble 

detachment. The reason for choosing D~=0.033 cm case was that given the range of gas flow 

rates and liquid velocities, the same detachment criterion (y - r - 0) can be used in low and 

normal gravity cases. Under full gravity, the relevance of TCR&"~i~~~ep(t, UL) becomes lesser 

due to the dominance of the gravity and its consequences of creating the buoyancy force on 

the detaching bubble. 

4. MODEL RESULTS-NORMAL GRAVITY 

In this work, prediction of the bubble diameter at detachment under normal gravity conditions 

is accomplished using the existing model adopted for normal gravity and using Kuamr-Kuloor 

model modified for a two dimensional geometry. 
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4.1 Current Model Modified for Normal Gravity 

Figure 15 shows the predicted and measured bubble diameter at detachment as a function of 

the cross liquid velocity using the current model adapted for normal gravity condition by 

changing the gravity level and the detachment criterion from y - r - 0 to y - r - RN - 0. The 

gas flow rates and the liquid velocity range are similar for those in low gravity. This change 

in the detachment criterion is adopted in order to account for the formation of the bubble neck 

under normal gravity conditions. 

The effect of adding or deleting FCP on the bubble diameter at detachment under full gravity is 

found to be negligible. This is in agreement with the physical situation at hand. The reason is 

that under normal gravity conditions, the buoyancy force dominates the process of 

detachment. Such a force is far stronger in I-g, which makes the forming bubble lifts upward 

and thereby forms a neck that pins the bubble to the orifice diameter. Since the bubble is well 

pinned by the dynamics of force interactions, the loss of pinning is not present and deletion of 

such a force is justified. Moreover, since FCP may be attributed to the loss of pinning and 

compromises the surface tension-attaching force, it is seen that the role of such a force is 

negligible in normal gravity because buoyancy lifts the bubble up and causes its pinning to the 

orifice diameter. 

4.2 Details of Kumar-Kuloor Model Modified to Two Dimensions 

This model is based on the fact that the bubble experiences two stages in its development. 

The first that is called the expansion phase ends at a point in time where the forces acting on 

the bubble are in equilibrium. When this is true, the equations of motion can be solved and a 

critical radius, rpe, can be calculated at the end of this phase. The bubble velocity and traveled 
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distance at this moment in time can serve as the initial conditions for the second phase of 

bubble life designated by the detachment phase. The detachment phase ends when the vertical 

displacement of the bubble center of mass is comparable to the bubble radius at the end of the 

expansion phase, %e. During this phase, the equations of motion for the bubble are solved 

simultaneously in a coupled fashion as in the microgravity model. The x and y coordinates 

are allowed to evolve until the bubble neck length equals the critical radius determined at the 

end of the expansion phase. Mathematically, this translates to, 

p & q - r ( t ) =  S( t ) - r ( t )?  rfhe ...................................... : ..................... (26) 

where S(t) is the magnitude of the vector position of the bubble center of mass and rfie is the 

critical bubble radius determined at the end of the expansion phase. Results of predictions 

using this model are shown in Fig. 15 for both orifice diameters D~=0.033 and 0.076 cm and 

for a range of gas flow rates that is similar to the low gravity experiment. We see from Fig. 15 

that the two models are in reasonable agreement. This two stage model, although gives a 

reasonable comparison with the experimental results without using any adjustable parameters 

fails in predicting the low gravity behavior. The concept of using two-stage model is not 

relevant to low gravity because the lack of buoyancy precludes the development of a bubble 

neck as seen from the experimental results. Therefore, the one-stage model is more relevant 

to low gravity than normal gravity. 

In addition, we show in Fig. 15 the limiting bubble diameter as UL+O under the governing gas 

flow rates experienced in the experiment. According to Oguz and Prosperetti (1993), there are 

critical gas flow rates below which the bubble diameter follows the quasi-static regime, tends 
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to be constant with gas flow rate, and follows the Fritz formula which is basically a balance 

between the buoyancy and surface tension force and which is given by, 

...................................................................................... DF = 2 (3&, /4pg )"' (27) 

The critical gas flow rate in normal gravity QgritlNg as calculated by Oguz and Prosperetti is 

given by, 

....................................................................... n[ '4 r[ OD, 2P (28) 
3 g  

QgCr i r lNg=  - 

Based on Eq. 28, the critical flow rates for D~=0.033 and 0.076 are 0.45 and 0.93 cm3/s. For 

the smaller orifice diameter, the critical flow rate is less than the gas flow rates we have 

measured in the experiment. Therefore, the bubble diameter becomes a function of the flow 

rate and such dependency is given by (Oguz and Prosperetti, 1993), 

.............................................................................................. D, =2[3&7 (29) 

Application of Eq. 29 to our experiment gives a bubble diameter of 0.326 cm or 3.26 mm at 

UL=O and Qg = 1 cm3/s and for the orifice D~=0.033 cm. For D~=0.076, and for Qg = 0.7 

cm3/s that is below 0.93 cm3/s, use of the Fritz formula yields a bubble diameter of D~=3.19 

mm and that is less than the bubble diameter obtained for D~=0.033 cm. For a gas flow rate 

Qg = 1.1 cm3/s which is greater than the criticaI gas flow rate of 0.93 cm3/s, the bubble 

diameter as calculated from Eq. 29 becomes 3.4 mm. Another limiting bubble diameter is 

also shown in Fig. 15 for D~=0.15  cm (with QgCritlNg = 1.7 cm3/s) and for Q, < Q gC"tlNg and Qg 
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> Q gCntlNg. For Qg < Q .$etlNg, the limiting bubble diameter is about 4 m. However, for Qg > 

Q gC"tlNg, the limiting bubble diameter becomes a function of the flow rate and is 5 mm for a 

gas flow rate Qg = 3 cm3/s. These approximations made by Oguz and Prosperetti were based 

on simple force models that did not take into effect all the forces acting on the bubble as did 

the model by Kumar and Kuloor. These calculated bubble diameters are shown also on Fig. 

15. 

5. CONCLUDING REMARKS 

In this work, a global force model for prediction of bubble diameter at detachment in low 

gravity was described and its predictions were compared with the experimental results 

obtained in low gravity on board of the NASA DC-9 low-gravity platform. This model was 

extended for normal gravity condition and its predictions were compared with the 

experimental results obtained under normal gravity. The latter predictions were also 

compared with the predictions of the Kumar-Kuloor approach that was based on the two-stage 

model. 

The model can be applied to cross flow cases of higher liquid velocities and different gas flow 

rates. The bubble Reynolds number, ReB should be between 5 and 500 because the shear lift 

force calculation is based on this criterion. The bubble diameters predicted by this model are 

less than ?h the hydraulic diameter of the channel. Detachment of large bubbles (on the order 

of Taylor bubble) cannot be predicted by this model because of the calculation of viscous 

forces which should be modified accordingly, in addition to the significant bubble 

deformation which must be taken into consideration. Bubble deformation is reflected in the 

bubble Weber number which should be less than or on the order of 1 in order for the nearly 
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spherical bubble growth to apply. Detachment of significantly deformed bubbles cannot be 

predicted by this model because of the inherent assumption of spherical bubble growth. 

Predictions of the global force model compared well with the experimental results reported by 

Nahra and Kamotani, 2000. However, a more rigorous approach to this problem requires 

numerical methods and CFD in order to better understand the pressure distribution around the 

evolving bubble and the treatment of its moving interface. A more rigorous approach would 

also encompass the accurate evaluation of the drag and shear lift coefficient based on the 

computed stresses on the bubble. Moreover, the lift force is expected to be higher for the 

pinned evolving bubble than that for a bubble in a simple shear flow because of the existence 

of the wall and the stagnation point(s) associated with the pinned bubble. The drag coefficient 

is expected to be different from the one used because of the deviation from spherical bubbles 

and the mere existence of the wall. These important factors can only be, without any 

idealization of the flow, evaluated numerically and it is recommended their assessment be 

carried out in such a manner. 

~ 
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NOTATION 

Bubble acceleration (cds’) 
Constants determined from the bubble angles &and/ 
Drag coefficient 
Lift coefficient 
Added mass coefficient 
Bubble diameter (cm) 
Diameter of injection orifice (cm) 
Channel hydraulic diameter or pipe diameter (cm) 
Buoyancy force (dynes) 
Drag force (dynes) 
Inertia force (dynes) 
Shear lift force (dynes) 
Momentum flux force (dynes) 
Surface tension force (dynes) 
Gravitational acceleration (cm/s2) 
Heavyside unit step function 
Unit vector in the x direction 
Unit vector in the y direction 
Gas, dispersed phase-airflow rate (cm3/s) 
Bubble radius as a function of time (cm) 
Bubble radius at end of expansion phase (cm) 

Position vector for the bubble center of mass (cm) 
Surjiace are of orifice (cm’) 
Time (s) 
Average supe@cial liquid velocity (cm/s) 
Gas velocity from orifice ( c d s )  
Bubble volume (em’) 
Weber number 
Component of motion along the x axis (em) 
Component of motion along they axis (cm) 

F D  

FI 
FSL 
F M  

We 

Y 
X 

Subscripts 
B 
C 
CritlNg 
Critlpg 
d 
F 
g 
L 
N 
P 

Bubble 
Chamber 
Critical based on normal gravity conditions 
Critical based on microgravity or low gravity conditions 
Detachment 
Fritz 
Disperse phase-Gas 
Continuous phase-Liquid, Lift 
Orifice 
Channel or pipe 
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SL Shear lift 
Unit Step Unit step function 
X,Y Rectangular coordinates 
0 Reference 

Superscripts 
high Re High Reynolds Number 
+ Slightly greater than zero 

Greek Symbols 
0 Frontal bubble contact angle 
P Back bubble contact angle 
4 Longitudinal angle (degrees, radians) 
71 Constant 
9 
Y Local contact angle function 
P Density (g/cm’) 
V Kinematic viscosity (cm2/s) 
0- Surface Tension CoefSicient (dynedcm) 

Bubble inclination angle (degrees or radians) 

Mathematical Symbols 

Integral 

First time derivative 
Second time derivative II 

Acronyms 
CFD Computational Fluid Dynamics 
NASA-GRC National Aeronautics and Space Administration-Glenn Research Center 
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FIGURES LEGEND 

Figure 1. Bubble coordinates and problem geometry. Note the forces acting on the bubble in 
the x and y directions. 

Figure 2. Ratio of the Lift to Drag coefficient as a function of the bubble Reynolds number 

Figure 3. Predicted r(t) [solid] and y(t) [dashed] as a function of time up to the detachment 
point for the following conditions, D~=0.033 cm, Q,=0.92 cm3/s, U~=2.59 c d s ,  and low 
gravity conditions. 

Figure 4. Predicted r(t) [solid] and y(t) [dashed] as a function of time up to the detachment 
point for the following conditions, D~=0.033 cm, Q,=0.92 cm3/s, U~=12  c d s ,  and low 
gravity conditions. 

Figure 5. Predicted r(t) and y(t) as a function of time up to the detachment point for the 
following conditions, D~=0.033 cm, 4 ~ 0 . 9 2  cm3/s, U~=2.59 cm/s, and normal gravity 
conditions. 

Figure 6. Predicted r(t) and y(t) as a function of time up to the detachment point for the 
following conditions, D~=0.033 cm, Q,=0.92 cm3/s, U~=12  c d s ,  and normal gravity 
conditions. 

Figure 7. Bubble acceleration as a function of time up to the detachment point for Q,=0.2 
cm3/s, U L = ~  c d s  (solid curve) and 10 c d s  (dashed curve), and D~=0.15 cm. Note that the 
shorter time to detachment corresponds to a higher liquid velocity. 

Figure 8. 
D~=0.033 cm and Qp0.92 cm3/s. 

Bubble diameter at detachment as a function of the cross liquid velocity for 

Figure 9. 
D~=0.076 cm and QpO.7 cm3/s. 

Bubble diameter at detachment as a function of the cross liquid velocity for 

Figure 10. Bubble diameter at detachment as a function of the cross liquid velocity for 
DN=O. 15 cm and Q,=0.2 and 0.02 cm3/s. 

Figure 1 1. Bubble diameter at detachment as a function of gas flow rate for DN=O. 15 cm and 
U~=13.2 and 5.2 cm/s. The lower set of data points corresponds to U~=13.2 c d s .  

Figure 12. Bubble diameter at detachment as a function of gas flow rate for D~=0.033 cm and 
U~=2.9 and 5.5 c d s  

Figure 13. Predicted effects of the surface tension coefficient on the bubble diameter at 
detachment for DN=O. 15 cm. 
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Figure 14. Bubble diameter as a function of the gravity levels for D~=0.033 cm, Q,=0.92 
cm3/s, and U L = ~  c d s .  

Figure 15. Predicted and experimental bubble diameter at detachment for normal gravity 
condition. 
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Figure 1. Bubble coordinates and problem geometry. Note the forces acting on the bubble in 
the x and y directions. 
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Figure 3. Predicted r(t) [solid] and y(t) [dashed] as a function of time up to the detachment 
point for the following conditions, D~=0.033 cm, Qp0.92 cm3/s, U~=2.59 cm/s, and low 
gravity conditions. 

0.2 

0.15 
E 

5 0.1 

v 

h 

&=I2 an/s 

Figure 4. Predicted r(t) [solid] and y(t) [dashed] as a function of time up to the detachment 
point for the following conditions, D~=0.033 cm, Q,=0.92 cm3/s, U ~ = 1 2  c d s ,  and low 
gravity conditions. 
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Figure 5. Predicted r(t) [solid] and y(t) [dashed] as a function of time up to the detachment 
point for the following conditions, D~=0.033 cm, Q,=0.92 cm3/s, U~=2.59 c d s ,  and normal 
gravity conditions. 
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Figure 6. Predicted r(t) [solid] and y(t) [dashed] as a function of time up to the detachment 
point for the following conditions, D~=0.033 cm, Q,=0.92 cm3/s, U~=12  c d s ,  and normal 
gravity conditions. 
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Figure 7. Bubble acceleration as a function of time up to the detachment point for Q,=0.2 
cm3/s, U L = ~  cm/s (solid curve) and 10 cm/s (dashed curve), and D~=0.15 cm. Note that the 
shorter time to detachment corresponds to a higher liquid velocity. 
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Figure 1 1. Bubble diameter at detachment as a function of gas flow rate for DN=O. 15 cm and 
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45 



15 

h 

E 
E 
v 

om 

g 10 

c c 

L 

8 
n 
c 
Q, 

a c 

a 
n 
3 

- n 
m 

0 
0 

0 

0 

Experimental, DN=0.033 cm, U,=2.59 cm/s 
Experimental, DN=0.033 cm, UL=5.5 cm/s 

- Predicted, DN=0.033 cm, U,=2.59 cm/s 
. . . . . . . Predicted, DN=0.033 cm, UL=5.5 cm/s 

1 2 

tias blow Kate Ug (cm'/s) 

Figure 12. Bubble diameter at detachment as a function of gas flow rate for D~=0.033 cm and 
U~=2.9 and 5.5 c d s  
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Figure 13. Predicted effects of the surface tension coefficient on the bubble diameter at 
detachment for DN=O. 15 cm. 
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Figure 14. Bubble diameter as a function of the gravity levels for D~=0.033 cm, QpO.92 
cm3/s, and U L = ~  c d s .  
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Figure 15. Predicted and experimental bubble diameter at detachment for normal gravity 
condition. 
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